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Persistence in coarsening one-dimensional spin systems with a power-law interactionr 212s is considered.
Numerical studies indicate that for sufficiently large values of the interaction exponents (s>1/2 in our
simulations!, persistence decays as an algebraic function of the length scaleL, P(L);L2u. The persistence
exponentu is found to be independent on the force exponents and close to its value for the extremal (s

→`) model, ū50.175 075 88•••. For smaller values of the force exponent (s,1/2), finite size effects
prevent the system from reaching the asymptotic regime. Scaling arguments suggest that in order to avoid
significant boundary effects for smalls, the system size should grow as@O(1/s)#1/s.
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Coarsening dynamics of one-dimensional~1D! systems
with a power-lawV(r );r 2s21 interaction between spin
has recently been studied by Lee and Cardy@1#, and Ruten-
berg and Bray@2#. It had been established that after quenc
ing from a high-temperature disordered phase toT50 these
systems develop a domain structure characterized by a s
length scaleL(t). A naive argument based on the law
motion for domain walls,L̇;L2s ~whereL2s is a typical
force between domain walls!, produces an asymptoticall
correct time dependence ofL,

L~ t !;t1/11s. ~1!

Other properties of this system, including correlation fun
tions and domain size distribution, have been studied in@2#
as well.

In this paper we shall look at another facet of 1D pha
ordering systems with a power-law interaction; what fract
P of spins have never changed sign up to the timet? Or,
equivalently, what fraction of the space has never b
crossed by a domain wall? Such a property of coarsen
systems is usually called persistence and has recently
come a major subject of research in statistical physics@3–7#.
Let us briefly review some known results in this field re
PRE 601063-651X/99/60~3!/2437~4!/$15.00
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evant to our problem. In@3# the exact solution was found fo
persistence in an ordering system described by the noise
time-dependent Ginzburg-Landau equation. In the long ti
asymptotic regime this model can be viewed as an infinit
short-ranges→` limit of the system with power-law inter-
action. In this limit, coarsening proceeds by consecut
shrinking and disappearance of the current smallest dom
in the system, while other domain boundaries remain vir
ally motionless. It was established in@3# that persistence at a
stage of evolution when the average domain sizeL is pro-
portional toL2 ū, where the exponentū50.175 07••• is the
solution of the implicit integral equation.

E
0

`

dx x212 ū exp@2x#,

~2!

†~12x2exp@2x# !exp@r ~x!#12ūx1 ūx2 exp@2r ~x!#‡,

wherer (x)[*x
`dy exp@2y#/y1ln@x#.

In @4# persistence exponents have been calculated
coarsening 1D Potts models with Glauber dynamics. For
R2437 © 1999 The American Physical Society



ri-
d

in
d
in
o
ic
d
o

a
he
e
ur
th
g

rs
g

b
ua
e
e
:

en-
by

-
gle

he

on-
i-

ary
sed.
an-
or-

age
.

a

gle

cor-

nd
nt
nd-
ese
f one
ors,
in
ing
or
ain
re

t

RAPID COMMUNICATIONS

R2438 PRE 60IAROSLAV ISPOLATOV
two-state Potts~Ising! model, persistence decays ast2u, u
53/8, or in terms of the average domain sizeL, P(L)
;L23/4.

The following conclusion can be drawn from a compa
son of persistence exponents for extremal and Glauber
namics. Extremal dynamics is more efficient in preserv
persistence, since the motion of domain walls is always
rected towards their ultimate annihilation partners while,
the case of Glauber dynamics, domain walls perform rand
walks and sweep through a larger amount of space, wh
otherwise could have remained persistent. The extremal
namics exponentū sets a lower bound on persistence exp
nents for systems with a finite force exponents. It is easy to
visualize a scenario when a domain wall first moves aw
from its ultimate annihilation partner, and then, after t
stronger force source disappears, it turns back. Such ev
result in spin flips on parts of the line that belong to a s
viving domain and would have been left untouched in
extremal dynamics case. The results presented below sug
that this lower boundaryū50.175 07••• is in fact the exact
value of the persistent exponent for arbitrarys.0.

Let us formally introduce our model; we consider coa
ening of the 1D two-state spin system with a long-ran
ferromagnetic Hamiltonian:

H5
24

s (
i . j

sisj

~xi2xj !
s11

. ~3!

After quenching from a high-temperature random phase
T50, coarsening dynamics for this system is determined
the motion of domain walls, governed by the Langevin eq
tion. The velocity of a wall is equal to the sum of pairwis
forces from other walls, with walls of the same signs rep
ling and walls of the opposite signs attracting each other

dri

dt
5(

j Þ i
~21! i 1 j sgn~r i2r j !Fi j , ~4!

FIG. 1. Plot of persistenceP(L) vs average domain sizeL for
various force exponentss. The straight line corresponds toP(L)

;L2 ū.
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. ~5!

When the adjacent walls meet, they annihilate. As we m
tioned, the degree of coarsening is uniquely characterized
a typical domain sizeL(t);t1/(11s). We measure the frac
tion of spaceP(L) that has never been crossed by a sin
domain wall as a function of this length scaleL(t). We per-
form molecular dynamics simulations of the model for t
following values of the force exponent: s
53/2,5/4,1,3/4,1/2,1/4. Each run starts with a system c
sisting ofN05100 000 domain walls with exponential distr
bution of domain sizes,W(L0)5exp(2L0). Results for each
s are averaged over 20 initial configurations. Open bound
conditions with no replicas added to the boundaries are u
To speed up the evaluation of forces, a 1D multipole exp
sion has been performed, and terms of up to quadrupole
der were taken into account@8#.

The results for persistence as a function of the aver
domain lengthL are presented in log-log form in Fig. 1
Except for small force exponents (s51/4 and later evolution
stages fors51/2), all of the curves collapse at a line with
slope '20.175, which corresponds tos5` extremal
model. Statistical error bars are shown in Fig. 2 for a sin
set of data (s55/4).

Our simulations suggests that scaling of persistence,
responding tos5`, is valid for all other not very smalls.
The following asymptotic argument helps us to understa
why this is so. At any current moment of time, persiste
spins are mostly contained in the domains that were expa
ing at almost all previous stages of coarsening; i.e., th
domains were larger than the average at those stages. I
of these large domains is surrounded by two small neighb
it would most probably grow outwards, and no spin flips,
addition to those inevitably caused by directed coarsen
itself, would happen. The situation may be different if two
three big domains are adjacent to each other; their dom
walls may wander and get inside the territory of the futu
survivor, causing some excessive spin flips.

FIG. 2. Log-log plot of persistenceP(L) vs average domain size
L force exponentss55/4 with statistical error bars. The straigh

line corresponds toP(L);L2 ū.
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We can estimate the characteristic scale of such
persistence-losing event. A typical distanceDL that a wall of
large domain of sizeLl , surrounded by a group of domain
of similar sizes, travels during timet is

DL;Ll2~Ll
(11s)2t !1/11s'L~ t !FL~ t !

Ll
Gs

. ~6!

HereL(t);t1/11s is the average domain size at timet. For
positive s, DL becomes small compared toL(t) when
L(t)/Ll!1; hence the number of spin flips in addition
those present in extremal dynamics coarsening scenario
comes negligible. Another conclusion that follows from E
~6! is that for smalls, the crossover time toP(L);L2 ū

scaling must be larger since the system must develop a s
ture that includes sufficiently large domains.

However, besides long initial transitional times, there
another reason for the breakdown of scaling for smalls that
we observed in our simulations. Let us first consider
opposite of thes5` case ofs50. In this limit forces are
distance independent, and the domain wall dynamics~4! is
described by the equation

dri

dt
5(

j Þ i
~21! i 1 j sgn~r i2r j !. ~7!

If we consider a system with even number of domains wh
the domain walls come in pairs, the sum in Eq.~7! is equal to
61. That means that all walls have the same constant ve
ity with odd-number walls moving to the left and eve
number moving to the right. The whole system become
collection of independently collapsing and growing domai
This clearly violates the scaling~1!; in fact, thes50 system
has two length scales,L022vt andL012vt, whereL0 is the
average initial domain length andv51 is the velocity of
domain walls. For an exponential distribution of initial d
main sizes,W(L0)5exp(2L0), persistence can be express
as

FIG. 3. Plot of average domain sizeL(t) vs time t for various
force exponentss. Straight lines correspond to scaling prediction
L(t);t1/11s.
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P̃~ t !5

E
0

`

W~x!dx1E
2vt

`

W~x!dx

2E
0

`

W~x!dx

5
11exp@22t#

2
, ~8!

with two terms in the numerator describing contributio
from growing and shrinking domains. Systems with few p
ticles and smalls coarsen almost according to thes50
scenario; particles across the whole system feel the pres
of the boundary. Odd- and even-number walls tend to m
predominantly to the left and right, respectively, independ
of the position of their nearest neighbors.

To probe whether the deviation fromP(L);L2 ū scaling
in persistence behavior is caused bys50 finite size effects,
we do the following measurements. First, for the system
the same initial size (N5105) we plot the average domai
length L(t) as a function of time and compare it to theL
;t1/11s prediction.

Results for this simulation are presented in Fig. 3. O
can see that the system withs51/4 is never in scaling re-
gime ~1!, and the system withs51/2 behaves according t
Eq. ~1! only up to some intermediate stage of evolution. F
all other force exponentss.1/2, for a certain period of evo
lution after a short transitional time, typical domain siz
scale according to Eq.~1!.

We also perform a direct check of whether the syst
feels the presence of the boundaries, i.e., we count the f
tion of domain wallsB(L) that move opposite to the direc
tion prescribed by the boundary effects. In Fig. 4 we plot
fraction of even-number domain walls moving to the rig
and odd-number domain walls moving to the left; initial
the systems consist of the same number of domainsN
5105. For finite s.0 and a truly infinite system, this frac
tion should be equal to 1/2, fors50 it should be 0. We
observe that, according to theB(L) criteria, our system is
never in the true infinite-size regime fors51/4, finite size
effects are becoming evident fors51/2 even at early stage
of evolution, and the boundary effects could be neglec
only for s>3/4.

,

FIG. 4. Number of domain wallsB(L) that move opposite to the
direction prescribed by boundary effects vs average domain le
L for various force exponentss.
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Comparing Figs. 1, 3, and 4, one can note that persiste
P(L) and the typical domain sizeL(t) are less sensitive to
the finite size effects thanB(L). When the significant frac-
tion of the domain walls moves in the direction prescribed
the boundaries@B(L)'1/4 for s51/2, L5102#, P(L) and
L(t) are still in the scaling regime. A possible explanati
for the relative robustness of the behavior of the aver
domain sizeP(L) and persistenceL(t) is that the main con-
tribution to these quantities comes from the large doma
while for B(L) we count the number of domain walls indi
criminate of the domain sizes.

Finally, we present a rough estimate of how big a syst
should be for a particular value ofs!1 to avoid significant
finite-size effects. We evaluate a typical ‘‘local’’ forceF122,
exerted on a test domain wall by a dipole pair of neighbor
domain walls,

F122'S 1

L D s

2S 1

2L D s

5S 1

L D s

@s ln 21O~s2!#, ~9!

and compare it to a ‘‘boundary’’ forceFN , exerted on the
same test domain wall in the middle of the system, by
single domain wall near the edge of the system.

FN'S 2

NLD s

. ~10!
ce

y

e

s,

g

a

HereL andN are the typical domain length and the numb
of domains in the system. The boundary effects become
nificant when these forces are of the same order. It follo
that for s→0, the minimum number of particles to avoi
finite size effectsNmin grows very fast:

Nmin;S C
s D 1/s

. ~11!

In summary, we presented numerical evidence and a s
ing argument suggesting the universality of persistent ex
nent for extremal model,ū50.175 075 88•••, for models
with arbitrary force exponentss.0. We found that a devia-
tion from scaling for persistence, which happens for smalls,
is accompanied by a similar deviation from scaling for
typical domain sizeL(t) and is caused by finite size effec
that cause crossover to as50 coarsening scenario. We e
timated that in order to avoid boundary effects, the syst
size should grow as@O(1/s)#1/s. A possible extension of
this work is for higher dimensional systems, though the d
ality between domain walls and spin dynamics that was
tensively used for this work may not be so straightforward
apply.

The author would like to thank P. Krapivsky, A. Ruten
berg, A. Hare, and R. Hill for interesting discussions.
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